42 found
Order:
  1. How Dualists Should (Not) Respond to the Objection from Energy Conservation.Alin C. Cucu & J. Brian Pitts - 2019 - Mind and Matter 17 (1):95-121.
    The principle of energy conservation is widely taken to be a se- rious difficulty for interactionist dualism (whether property or sub- stance). Interactionists often have therefore tried to make it satisfy energy conservation. This paper examines several such attempts, especially including E. J. Lowe’s varying constants proposal, show- ing how they all miss their goal due to lack of engagement with the physico-mathematical roots of energy conservation physics: the first Noether theorem (that symmetries imply conservation laws), its converse (that conservation (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  2. Conservation Laws and the Philosophy of Mind: Opening the Black Box, Finding a Mirror.J. Brian Pitts - 2019 - Philosophia 48 (2):673-707.
    Since Leibniz's time, Cartesian mental causation has been criticized for violating the conservation of energy and momentum. Many dualist responses clearly fail. But conservation laws have important neglected features generally undermining the objection. Conservation is _local_, holding first not for the universe, but for everywhere separately. The energy in any volume changes only due to what flows through the boundaries. Constant total energy holds if the global summing-up of local conservation laws converges; it probably doesn't in reality. Energy conservation holds (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  3. Change in Hamiltonian general relativity from the lack of a time-like Killing vector field.J. Brian Pitts - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:68-89.
    In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. Attention to the gauge generator G of Rosenfeld, Anderson, Bergmann, Castellani et al., a specially _tuned sum_ of first-class constraints, facilitates seeing that a solitary first-class constraint in fact generates not a gauge transformation, but a bad physical change in electromagnetism or (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  4. Gauge-invariant localization of infinitely many gravitational energies from all possible auxiliary structures.J. Brian Pitts - unknown
    The problem of finding a covariant expression for the distribution and conservation of gravitational energy-momentum dates to the 1910s. A suitably covariant infinite-component localization is displayed, reflecting Bergmann's realization that there are infinitely many gravitational energy-momenta. Initially use is made of a flat background metric (or rather, all of them) or connection, because the desired gauge invariance properties are obvious. Partial gauge-fixing then yields an appropriate covariant quantity without any background metric or connection; one version is the collection of pseudotensors (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  5. Space–time philosophy reconstructed via massive Nordström scalar gravities? Laws vs. geometry, conventionality, and underdetermination.J. Brian Pitts - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:73-92.
    What if gravity satisfied the Klein-Gordon equation? Both particle physics from the 1920s-30s and the 1890s Neumann-Seeliger modification of Newtonian gravity with exponential decay suggest considering a "graviton mass term" for gravity, which is _algebraic_ in the potential. Unlike Nordström's "massless" theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman-Cunningham conformal group. It therefore exhibits the whole of Minkowski space-time structure, albeit only indirectly concerning volumes. Massive (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  6.  86
    Absolute objects and counterexamples: Jones--Geroch dust, Torretti constant curvature, tetrad-spinor, and scalar density.J. Brian Pitts - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37:347-71.
    James L. Anderson analyzed the novelty of Einstein's theory of gravity as its lack of "absolute objects." Michael Friedman's related work has been criticized by Roger Jones and Robert Geroch for implausibly admitting as absolute the timelike 4-velocity field of dust in cosmological models in Einstein's theory. Using the Rosen-Sorkin Lagrange multiplier trick, I complete Anna Maidens's argument that the problem is not solved by prohibiting variation of absolute objects in an action principle. Recalling Anderson's proscription of "irrelevant" variables, I (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  7. Permanent Underdetermination from Approximate Empirical Equivalence in Field Theory: Massless and Massive Scalar Gravity, Neutrino, Electromagnetic, Yang–Mills and Gravitational Theories.J. Brian Pitts - 2010 - British Journal for the Philosophy of Science 62 (2):259-299.
    Classical and quantum field theory provide not only realistic examples of extant notions of empirical equivalence, but also new notions of empirical equivalence, both modal and occurrent. A simple but modern gravitational case goes back to the 1890s, but there has been apparently total neglect of the simplest relativistic analog, with the result that an erroneous claim has taken root that Special Relativity could not have accommodated gravity even if there were no bending of light. The fairly recent acceptance of (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  8. General Relativity, Mental Causation, and Energy Conservation.J. Brian Pitts - 2022 - Erkenntnis 87 (4):1931-1973.
    The conservation of energy and momentum have been viewed as undermining Cartesian mental causation since the 1690s. Modern discussions of the topic tend to use mid-nineteenth century physics, neglecting both locality and Noether’s theorem and its converse. The relevance of General Relativity has rarely been considered. But a few authors have proposed that the non-localizability of gravitational energy and consequent lack of physically meaningful local conservation laws answers the conservation objection to mental causation: conservation already fails in GR, so there (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  9.  89
    Kant, Schlick and Friedman on Space, Time and Gravity in Light of Three Lessons from Particle Physics.J. Brian Pitts - 2018 - Erkenntnis 83 (2):135-161.
    Kantian philosophy of space, time and gravity is significantly affected in three ways by particle physics. First, particle physics deflects Schlick’s General Relativity-based critique of synthetic a priori knowledge. Schlick argued that since geometry was not synthetic a priori, nothing was—a key step toward logical empiricism. Particle physics suggests a Kant-friendlier theory of space-time and gravity presumably approximating General Relativity arbitrarily well, massive spin-2 gravity, while retaining a flat space-time geometry that is indirectly observable at large distances. The theory’s roots (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  10. Einstein׳s physical strategy, energy conservation, symmetries, and stability: “But Grossmann & I believed that the conservation laws were not satisfied”.J. Brian Pitts - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 54 (C):52-72.
    Recent work on the history of General Relativity by Renn, Sauer, Janssen et al. shows that Einstein found his field equations partly by a physical strategy including the Newtonian limit, the electromagnetic analogy, and energy conservation. Such themes are similar to those later used by particle physicists. How do Einstein's physical strategy and the particle physics derivations compare? What energy-momentum complex did he use and why? Did Einstein tie conservation to symmetries, and if so, to which? How did his work (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  11.  66
    A First Class Constraint Generates Not a Gauge Transformation, But a Bad Physical Change: The Case of Electromagnetism.J. Brian Pitts - unknown
    In Dirac-Bergmann constrained dynamics, a first-class constraint typically does not _alone_ generate a gauge transformation. By direct calculation it is found that each first-class constraint in Maxwell's theory generates a change in the electric field E by an arbitrary gradient, spoiling Gauss's law. The secondary first-class constraint p^i,_i=0 still holds, but being a function of derivatives of momenta, it is not directly about E. Only a special combination of the two first-class constraints, the Anderson-Bergmann -Castellani gauge generator G, leaves E (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  12.  49
    Einstein׳s Equations for Spin 2 Mass 0 from Noether׳s Converse Hilbertian Assertion.J. Brian Pitts - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 56:60-69.
    An overlap between the general relativist and particle physicist views of Einstein gravity is uncovered. Noether's 1918 paper developed Hilbert's and Klein's reflections on the conservation laws. Energy-momentum is just a term proportional to the field equations and a "curl" term with identically zero divergence. Noether proved a \emph{converse} "Hilbertian assertion": such "improper" conservation laws imply a generally covariant action. Later and independently, particle physicists derived the nonlinear Einstein equations assuming the absence of negative-energy degrees of freedom for stability, along (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  13.  52
    The nontriviality of trivial general covariance: How electrons restrict ‘time’ coordinates, spinors fit into tensor calculus, and of a tetrad is surplus structure.J. Brian Pitts - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):1-24.
    It is a commonplace in the philosophy of physics that any local physical theory can be represented using arbitrary coordinates, simply by using tensor calculus. On the other hand, the physics literature often claims that spinors \emph{as such} cannot be represented in coordinates in a curved space-time. These commonplaces are inconsistent. What general covariance means for theories with fermions, such as electrons, is thus unclear. In fact both commonplaces are wrong. Though it is not widely known, Ogievetsky and Polubarinov constructed (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  14.  89
    Conservation of Energy: Missing Features in Its Nature and Justification and Why They Matter.J. Brian Pitts - 2020 - Foundations of Science 26 (3):559-584.
    Misconceptions about energy conservation abound due to the gap between physics and secondary school chemistry. This paper surveys this difference and its relevance to the 1690s–2010s Leibnizian argument that mind-body interaction is impossible due to conservation laws. Justifications for energy conservation are partly empirical, such as Joule’s paddle wheel experiment, and partly theoretical, such as Lagrange’s statement in 1811 that energy is conserved if the potential energy does not depend on time. In 1918 Noether generalized results like Lagrange’s and proved (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  15.  53
    Space-time constructivism vs. modal provincialism: Or, how special relativistic theories needn't show Minkowski chronogeometry.J. Brian Pitts - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:191-198.
    Already in 1835 Lobachevski entertained the possibility of multiple geometries of the same type playing a role. This idea of rival geometries has reappeared from time to time but had yet to become a key idea in space-time philosophy prior to Brown's _Physical Relativity_. Such ideas are emphasized towards the end of Brown's book, which I suggest as the interpretive key. A crucial difference between Brown's constructivist approach to space-time theory and orthodox "space-time realism" pertains to modal scope. Constructivism takes (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  16.  19
    Equivalent Theories Redefine Hamiltonian Observables to Exhibit Change in General Relativity.J. Brian Pitts - unknown
    Change and local spatial variation are missing in canonical General Relativity's observables as usually defined, an aspect of the problem of time. Definitions can be tested using equivalent formulations of a theory, non-gauge and gauge, because they must have equivalent observables and everything is observable in the non-gauge formulation. Taking an observable from the non-gauge formulation and finding the equivalent in the gauge formulation, one requires that the equivalent be an observable, thus constraining definitions. For massive photons, the de Broglie-Proca (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  17. Why the big Bang singularity does not help the Kal M cosmological argument for theism.J. Brian Pitts - 2008 - British Journal for the Philosophy of Science 59 (4):675-708.
    The cosmic singularity provides negligible evidence for creation in the finite past, and hence theism. A physical theory might have no metric or multiple metrics, so a ‘beginning’ must involve a first moment, not just finite age. Whether one dismisses singularities or takes them seriously, physics licenses no first moment. The analogy between the Big Bang and stellar gravitational collapse indicates that a Creator is required in the first case only if a Destroyer is needed in the second. The need (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  18.  42
    Equivalent Theories and Changing Hamiltonian Observables in General Relativity.J. Brian Pitts - 2018 - Foundations of Physics 48 (5):579-590.
    Change and local spatial variation are missing in Hamiltonian general relativity according to the most common definition of observables as having 0 Poisson bracket with all first-class constraints. But other definitions of observables have been proposed. In pursuit of Hamiltonian–Lagrangian equivalence, Pons, Salisbury and Sundermeyer use the Anderson–Bergmann–Castellani gauge generator G, a tuned sum of first-class constraints. Kuchař waived the 0 Poisson bracket condition for the Hamiltonian constraint to achieve changing observables. A systematic combination of the two reforms might use (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  19.  95
    Null Cones and Einstein's Equations in Minkowski Spacetime.J. Brian Pitts & W. C. Schieve - 2004 - Foundations of Physics 34 (2):211-238.
    If Einstein's equations are to describe a field theory of gravity in Minkowski spacetime, then causality requires that the effective curved metric must respect the flat background metric's null cone. The kinematical problem is solved using a generalized eigenvector formalism based on the Segré classification of symmetric rank 2 tensors with respect to a Lorentzian metric. Securing the correct relationship between the two null cones dynamically plausibly is achieved using the naive gauge freedom. New variables tied to the generalized eigenvector (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  20.  38
    What represents space-time? And what follows for substantivalism vs. relationalism and gravitational energy?J. Brian Pitts - 2022 - In Antonio Vassallo (ed.), The Foundations of Spacetime Physics: Philosophical Perspectives. New York, NY: Routledge.
    The questions of what represents space-time in GR, the status of gravitational energy, the substantivalist-relationalist issue, and the exceptional status of gravity are interrelated. If space-time has energy-momentum, then space-time is substantival. Two extant ways to avoid the substantivalist conclusion deny that the energy-bearing metric is part of space-time or deny that gravitational energy exists. Feynman linked doubts about gravitational energy to GR-exceptionalism, as do Curiel and Duerr; particle physics egalitarianism encourages realism about gravitational energy. In that spirit, this essay (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  21.  47
    Does Meta-induction Justify Induction: Or Maybe Something Else?J. Brian Pitts - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (3):393-419.
    According to the Feigl–Reichenbach–Salmon–Schurz pragmatic justification of induction, no predictive method is guaranteed or even likely to work for predicting the future; but if anything will work, induction will work—at least when induction is employed at the meta-level of predictive methods in light of their track records. One entertains a priori all manner of esoteric prediction methods, and is said to arrive a posteriori at the conclusion, based on the actual past, that object-level induction is optimal. Schurz’s refinements largely solve (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22.  25
    Progress and Gravity: Overcoming Divisions between General Relativity and Particle Physics and between Physics and HPS.J. Brian Pitts - 2017 - In Khalil Chamcham, John Barrow, Simon Saunders & Joe Silk (eds.), The Philosophy of Cosmology. Cambridge, United Kingdom: Cambridge University Press. pp. 263-282.
    Reflective equilibrium between physics and philosophy, and between GR and particle physics, is fruitful and rational. I consider the virtues of simplicity, conservatism, and conceptual coherence, along with perturbative expansions. There are too many theories to consider. Simplicity supplies initial guidance, after which evidence increasingly dominates. One should start with scalar gravity; evidence required spin 2. Good beliefs are scarce, so don't change without reason. But does conservatism prevent conceptual innovation? No: considering all serious possibilities could lead to Einstein's equations. (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  23.  27
    Peter Bergmann on observables in Hamiltonian General Relativity: A historical-critical investigation.J. Brian Pitts - 2022 - Studies in History and Philosophy of Science Part A 95 (C):1-27.
  24. Empirical equivalence, artificial gauge freedom and a generalized kretschmann objection.J. Brian Pitts - unknown
    Einstein considered general covariance to characterize the novelty of his General Theory of Relativity (GTR), but Kretschmann thought it merely a formal feature that any theory could have. The claim that GTR is ``already parametrized'' suggests analyzing substantive general covariance as formal general covariance achieved without hiding preferred coordinates as scalar ``clock fields,'' much as Einstein construed general covariance as the lack of preferred coordinates. Physicists often install gauge symmetries artificially with additional fields, as in the transition from Proca's to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  25.  22
    Change in Hamiltonian General Relativity with Spinors.J. Brian Pitts - 2021 - Foundations of Physics 51 (6):1-30.
    In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. By construing change as essential time dependence, one can find change locally in vacuum GR in the Hamiltonian formulation just where it should be. But what if spinors are present? This paper is motivated by the tendency in space-time philosophy tends to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Irrelevant conjunction and the ratio measure or historical skepticism.J. Brian Pitts - 2013 - Synthese 190 (12):2117-2139.
    It is widely believed that one should not become more confident that all swans are white and all lions are brave simply by observing white swans. Irrelevant conjunction or “tacking” of a theory onto another is often thought problematic for Bayesianism, especially given the ratio measure of confirmation considered here. It is recalled that the irrelevant conjunct is not confirmed at all. Using the ratio measure, the irrelevant conjunction is confirmed to the same degree as the relevant conjunct, which, it (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  27.  50
    Null cones in lorentz-covariant general relativity.J. Brian Pitts & W. C. Schieve - unknown
    The oft-neglected issue of the causal structure in the flat spacetime approach to Einstein's theory of gravity is considered. Consistency requires that the flat metric's null cone be respected, but this does not automatically happen. After reviewing the history of this problem, we introduce a generalized eigenvector formalism to give a kinematic description of the relation between the two null cones, based on the Segre' classification of symmetric rank 2 tensors with respect to a Lorentzian metric. Then we propose a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  28.  88
    Nonsingularity of Flat Robertson–Walker Models in the Special Relativistic Approach to Einstein's Equations.J. Brian Pitts & W. C. Schieve - 2003 - Foundations of Physics 33 (9):1315-1321.
    Recently the neglected issue of the causal structure in the flat space-time approach to Einstein's theory of gravity has been substantially resolved. Consistency requires that the flat metric's null cone be respected by the null cone of the effective curved metric. While consistency is not automatic, thoughtful use of the naive gauge freedom resolves the problem. After briefly recapitulating how consistent causality is achieved, we consider the flat Robertson–Walker Big Bang model. The Big Bang singularity in the spatially flat Robertson–Walker (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  29.  45
    Underconsideration in Space-time and Particle Physics.J. Brian Pitts - unknown
    The idea that a serious threat to scientific realism comes from unconceived alternatives has been proposed by van Fraassen, Sklar, Stanford and Wray among others. Peter Lipton's critique of this threat from underconsideration is examined briefly in terms of its logic and its applicability to the case of space-time and particle physics. The example of space-time and particle physics indicates a generic heuristic for quantitative sciences for constructing potentially serious cases of underdetermination, involving one-parameter family of rivals T_m that work (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  30.  62
    On Parametrized General Relativity.J. Brian Pitts & W. C. Schieve - 1998 - Foundations of Physics 28 (9):1417-1424.
    A physical framework has been proposed which describes manifestly covariant relativistic evolution using a scalar time τ. Studies in electromagnetism, measurement, and the nature of time have demonstrated that in this framework, electromagnetism must be formulated in terms of τ-dependent fields. Such an electromagnetic theory has been developed. Gravitation must also use of τ-dependent fields, but many references do not take the metric's dependence on τ fully into account. Others differ markedly from general relativity in their formulation. In contrast, this (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Some Thoughts on Relativity and the Flow of Time: Einstein’s Equations given Absolute Simultaneity.J. Brian Pitts - 2004 - Chronos 6.
    The A-theory of time has intuitive and metaphysical appeal, but suffers from tension, if not inconsistency, with the special and general theories of relativity (STR and GTR). The A-theory requires a notion of global simultaneity invariant under the symmetries of the world's laws, those ostensible transformations of the state of the world that in fact leave the world as it was before. Relativistic physics, if read in a realistic sense, denies that there exists any notion of global simultaneity that is (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  32. Synopsis and discussion. Workshop: Underdetermination in science 21-22 March, 2009. Center for philosophy of science.Greg Frost-Arnold, J. Brian Pitts, John Norton, John Manchak, Dana Tulodziecki, P. D. Magnus, David Harker & Kyle Stanford - manuscript
    This document collects discussion and commentary on issues raised in the workshop by its participants. Contributors are: Greg Frost-Arnold, David Harker, P. D. Magnus, John Manchak, John D. Norton, J. Brian Pitts, Kyle Stanford, Dana Tulodziecki.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33.  37
    On Two Slights to Noether's First Theorem: Mental Causation and General Relativity.J. Brian Pitts - unknown
    It is widely held among philosophers that the conservation of energy is true and important, and widely held among philosophers of science that conservation laws and symmetries are tied together by Noether's first theorem. However, beneath the surface of such consensus lie two slights to Noether's first theorem. First, there is a 325+-year controversy about mind-body interaction in relation to the conservation of energy and momentum, with occasional reversals of opinion. The currently popular Leibnizian view, dominant since the late 19th (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34.  55
    Time and Fermions: General Covariance vs. Ockham's Razor for Spinors.J. Brian Pitts - unknown
    It is a commonplace in the foundations of physics, attributed to Kretschmann, that any local physical theory can be represented using arbitrary coordinates, simply by using tensor calculus. On the other hand, the physics and mathematics literature often claims that spinors \emph{as such} cannot be represented in coordinates in a curved space-time. These commonplaces are inconsistent. What general covariance means for theories with fermions is thus unclear. In fact both commonplaces are wrong. Though it is not widely known, Ogievetsky and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Absolute objects, counterexamples and general covariance.J. Brian Pitts - unknown
    The Anderson-Friedman absolute objects program has been a favorite analysis of the substantive general covariance that supposedly characterizes Einstein's General Theory of Relativity (GTR). Absolute objects are the same locally in all models (modulo gauge freedom). Substantive general covariance is the lack of absolute objects. Several counterexamples have been proposed, however, including the Jones-Geroch dust and Torretti constant curvature spaces counterexamples. The Jones-Geroch dust case, ostensibly a false positive, is resolved by noting that holes in the dust in some models (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36.  15
    Einstein and Religion.J. Brian Pitts - 2003 - Philosophia Christi 5 (2):655-659.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  22
    First-Class Constraints, Gauge Transformations, de-Ockhamization, and Triviality: Replies to Critics, Or, How (Not) to Get a Gauge Transformation from a Second-Class Primary Constraint.J. Brian Pitts - unknown
    Recently two pairs of authors have aimed to vindicate the longstanding "orthodox" or conventional claim that a first-class constraint generates a gauge transformation in typical gauge theories such as electromagnetism, Yang-Mills and General Relativity, in response to the Lagrangian-equivalent reforming tradition, in particular Pitts, _Annals of Physics_ 2014. Both pairs emphasize the coherence of the extended Hamiltonian formalism against what they take to be core ideas in Pitts 2014, but both overlook Pitts 2014's sensitivity to ways that one might rescue (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  27
    God and the Nature of Time.J. Brian Pitts - 2007 - Philosophia Christi 9 (1):231-235.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  39.  64
    On the Form of Parametrized Gravitation in Flat Spacetime.J. Brian Pitts & W. C. Schieve - 1999 - Foundations of Physics 29 (12):1977-1985.
    In a framework describing manifestly covariant relativistic evolution using a scalar time τ, consistency demands that τ-dependent fields be used. In recent work by the authors, general features of a classical parametrized theory of gravitation, paralleling general relativity where possible, were outlined. The existence of a preferred “time” coordinate τ changes the theory significantly. In particular, the Hamiltonian constraint for τ is removed From the Euler-Lagrange equations. Instead of the 5-dimensional stress-energy tensor, a tensor comprised of 4-momentum density mid flux (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  40.  62
    The Anderson-Friedman absolute objects program: Several successes, one difficulty.J. Brian Pitts - unknown
    The Anderson-Friedman absolute objects project is reviewed. The Jones-Geroch dust 4-velocity counterexample is resolved by eliminating irrelevant structure. Torretti's example involving constant curvature spaces is shown to have an absolute object on Anderson's analysis. The previously neglected threat of an absolute object from an orthonormal tetrad used for coupling spinors to gravity appears resolvable by eliminating irrelevant fields and using a modified spinor formalism. However, given Anderson's definition, GTR itself has an absolute object (as Robert Geroch has observed recently): a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  95
    The relevance of irrelevance: Absolute objects and the Jones-Geroch dust velocity counterexample, with a note on spinors.J. Brian Pitts - unknown
    James L. Anderson analyzed the conceptual novelty of Einstein's theory of gravity as its lack of ``absolute objects.'' Michael Friedman's related concept of absolute objects has been criticized by Roger Jones and Robert Geroch for implausibly admitting as absolute the timelike 4-velocity field of dust in cosmological models in Einstein's theory. Using Nathan Rosen's action principle, I complete Anna Maidens's argument that the Jones-Geroch problem is not solved by requiring that absolute objects not be varied. Recalling Anderson's proscription of (globally) (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  42.  22
    What Are Observables in Hamiltonian Theories? Testing Definitions with Empirical Equivalence.J. Brian Pitts - unknown
    Change seems missing in Hamiltonian General Relativity's observables. The typical definition takes observables to have $0$ Poisson bracket with \emph{each} first-class constraint. Another definition aims to recover Lagrangian-equivalence: observables have $0$ Poisson bracket with the gauge generator $G$, a \emph{tuned sum} of first-class constraints. Empirically equivalent theories have equivalent observables. That platitude provides a test of definitions using de Broglie's massive electromagnetism. The non-gauge ``Proca'' formulation has no first-class constraints, so everything is observable. The gauge ``Stueckelberg'' formulation has first-class constraints, (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark